Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro.

نویسندگان

  • Changyong Yuan
  • Penglai Wang
  • Lifang Zhu
  • Waruna Lakmal Dissanayaka
  • David William Green
  • Edith H Y Tong
  • Lijian Jin
  • Chengfei Zhang
چکیده

The success of bioengineered dental pulp depends on two principles, (1) whether the transplanted tissue can develop its own vascular endothelial tubule network and (2) whether the host vasculature can be induced to penetrate the bioengineered pulp replacement and conjoin. Major inductive molecules that participate in laying down blood vessels include vascular endothelial growth factor (VEGF), ephrinB2, and hypoxia-inducible factor 1α (HIF-1α). Being able to modulate the genes encoding these angiogenic molecules is a therapeutic target in pulp regeneration for endogenous blood vessel formation, prevention of graft rejection, and exclusion of infection. Once implanted inside the root canal, bioengineered pulp is subjected to severe hypoxia that causes tissue degeneration. However, short-term hypoxia is known to stimulate angiogenesis. Thus, it may be feasible to prime dental cells for angiogenic activity before implantation. Stem cells from apical papilla (SCAP) are arguably one of the most potent and versatile dental stem cell populations for bioengineering pulp in vitro. Our study aimed to investigate whether coculture of SCAP and human umbilical vein endothelial cells (HUVECs) under hypoxia promotes the formation of endothelial tubules and a blood vessel network. In addition, we clarified the interplay between the genes that orchestrate these important angiogenic molecules in SCAP under hypoxic conditions. We found that SCAP cocultured with HUVEC at a 1:5 ratio increased the number of endothelial tubules, tubule lengths, and branching points. Fluorescence staining showed that HUVEC formed the trunk of tubular structures, whereas SCAP located adjacent to the endothelial cell line, resembling the pericyte location. When we used CoCl2 (0.5 mM) to induce hypoxic environment, the expression of proteins, HIF-1α and VEGF, and transcript of ephrinB2 in SCAP was upregulated. However, minimal VEGF levels in supernatants of HUVEC and coculture Petri dishes were detected, suggesting that VEGF secreted by SCAP might be used by HUVEC to accelerate the formation of vessel-like structures. Taken together, we revealed that artificial hypoxia stimulates angiogenic responses in SCAP for possible use in engineering dental pulp replacements. Our results may help to delineate the optimal therapeutic target to promote angiogenesis so that future bioengineered pulp replacements integrate faster and permanently within the host.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells

 Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...

متن کامل

Tooth Regeneration with Stem Cell Sources

Introduction: During the last decade, advances in tissue engineering and stem cell-based tooth regeneration have provided realistic and attractive means of replacing lost or damaged teeth. The first adult stem cells isolated from dental tissues were dental pulp stem cells (DPSCs). When transplanted with hydroxyl apatite/tri calcium phosphate (HA/TCP) powder, they formed a dentin-like structure...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

Angiogenesis Following Three-Dimensional Culture of Isolated Human Endometrial Stromal Cells

Background Endometriosis is the presence of endometrial tissue outside of the uterine cavity and is the most common gynecologic disorder in women of reproductive age. We have preliminary evidence that in the presence of a 3-dimensional (3-D) fibrin matrix, human endometrial glands, stroma, and neovascularization can develop in vitro, mimicking the earliest stages of endometriosis. The aim of th...

متن کامل

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 21 5-6  شماره 

صفحات  -

تاریخ انتشار 2015